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This paper is concerned with the behaviour of buoyant plumes driven by a source of 
bubbles. It is shown experimentally that, when a bubble plume rises through a 
stratified environment, fluid can be transported vertically for some distance and then 
some of this fluid can leave the plume and spread out horizontally at its own density 
level. A simple plume model which regards the plume as a single entity is discussed in 
order to make a first assessment of the effects of gas expansion and bubble slip velocity 
in this stratified case. However, the experiments reveal a more complicated plume 
structure in which the bubbles remain in the centre part of the plume, and only the 
outer part of the plume spreads out into the environment at certain levels. On the 
basis of these observations a double-plume model is proposed which regards the plume 
as being composed of two parts: an inner circular plume (which contains all the bubbles 
of gas) and an outer annular plume. 

1. Introduction 
Buoyant plumes driven by a source of gas bubbles have found a number of uses over 

the years. Bubble breakwaters operate because of the surface jet which the plume 
produces (Taylor 1955) and have been used with varying degrees of success (Bulson 
1968). Bubble plumes have also been used to prevent parts of the surface of a river or 
lake from freezing over (Baines 1961). Oil slicks on water surfaces can be contained by 
bubble plumes (Jones 1972). Protection from underwater-explosion damage is another 
application. Bubble plumes have also been used to keep swimming areas free from 
slow-moving objects such as sea nettles (Marks & Cargo 1974). 

The current interest in bubble plumes arose in connexion with the consequences 
of an underwater oil-well blow-out. Characteristically a lot of gas is emitted along 
with the oil, and the plume which develops is mainly due to the presence of the bubbles 
which are formed from this gas (Topham 1974). Oil is very harmful to marine life and 
is very difficult to clean up in the ocean (Hoult 1969). The extent of the damage which 
results from an oil-well blow-out is strongly dependent on whether all the oil rises 
straight to the surface or whether some of it spreads out horizontally at  some inter- 
mediate depth (perhaps as an oil-water emulsion). 

A bubble plume is different to a plume driven by a normal source of buoyancy, in 
three important respects, First, the volume flow rate of gas will increase with height 
because the pressure acting on the gas decreases. Second, the bubbles will rise faster 
than the liquid part of the plume surrounding them. Third, in a stratified environment, 
the bubbles will continue to rise past any height at which simple plume theory predicts 
that the plume as a whole would stop rising and would spread out horizontally. 

The current work begins by using the horizontally integrated equations of conserva- 
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tion of mass, momentum and buoyancy (Morton, Taylor & Turner 1956) in an appro- 
priate form for bubble plumes. We shall speak of an ordinary (or normal) plume as 
being one driven by a source of buoyancy such as heat or a concentration difference 
and in which the plume fluid is homogeneous in the sense that it is not composed of a 
fine mixture of two substances (such as liquid and gas). Morton et al. (1 956) have found 
for an ordinary plume in a stratified environment that a height is reached at which the 
buoyancy is zero, and as the plume proceeds above this level (because of its inertia), it 
continues to slow down, gaining negative buoyancy. Eventually the plume stops rising 
altogether, finally spreading out at a height somewhat less than the maximum height 
reached by the plume. In  the case of a bubble plume, the bubbles themselves will not of 
course settle out at an intermediate height and this is one of the main differences to be 
elucidated here. The first model for a bubble plume in stratified surroundings described 
in this paper has no in-built mechanism whereby the liquid part of the plume and 
the bubbles can separate near this intermediate height, and so this model will not give 
realistic results near this level. However it is instructive to go through the derivation 
of this model because while Ditmars & Cederwall (1974) have described the behaviour 
due to gas expansion and bubble slipping, the current work also includes the effects 
of stratification. It is easier to see how to include stratification by considering a 
single-plume model, so this is a helpful preliminary to formulating the more realistic 
double-plume model. 

Experiments were carried out in a stratified environment, and as expected, these 
show that fluid can leave the plume and spread out horizontally, while the centre of 
the plume, where all the bubbles are concentrated, continues to rise. On the basis of 
these experimental observations, a ' double-plume ' model is proposed. This model has 
a circular inner plume in which all the bubbles are confined, surrounded by an annular 
outer plume which contains only liquid. A series of conservation equations are derived 
for this model and are solved numerically for several values of the parameters involved. 

2. First plume model 
Consider a point source of gas at a depth h below the liquid surface (figure 1). Let 

Q ( z )  be the steady flow rate of gas at  any height x above the point source and let Qo 
be Q(h), the value of Q a t  the surface. By assuming isothermal expansion of the gas 
bubbles as they rise, we find that constancy of the mass flow rate of the gas implies 

where pa  = pressure at  the surface (i.e. atmospheric pressure), 
g = gravitational acceleration, 

pr = reference liquid density, 
H = h+pa/pr  g = h+ 10.2m = static pressure head at  nozzle. 

In  the oil-well problem the gas and oil may emerge at 85 "C but the heat transfer 
between the sea water and the gas bubbles will soon ensure that the bubbles are at the 
same temperature as the water and hence isothermal expansion can be assumed. (The 
e-folding time for the temperature difference is about 1s.) Also the heat supplied at 
the nozzle has a negligible effect on the buoyancy of the plume in comparison with the 
presence of the bubbles (Topham 1974). 
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It is convenient to assume an average vertical velocity profile given by 

v( r ,  z )  = v(z )  exp ( - r2 /b2 ) ,  
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where v(r ,z)  = vertical velocity at height z and radius r,  v(z )  = vertical velocity on 
centre-line at height z ,  b = effective radius of plume. This has some experimental 
support in unstratified surroundings (Kobus 1968), but in any case the exact form of 
the profile is not important in determining the physics of the model; the only essential 
assumption is that the profiles are similar at  all heights. 

It is usual to assume that the distribution of the density deficiency can also be 
represented by a Gaussian profile, but in this case with a spread hb, i.e. 

gf(r,  z )  = g’(z) exp ( - r2/h2b2), 

where 

and p,(z) = density of environment at  height z. 
Three differential equations can be found which describe the motion of the plume; 

these are obtained from (i) conservation of mass, (ii) conservation of momentum and 
(iii) conservation of buoyancy. We shall consider each of these in turn. 

Mass conservation around a horizontal element of the plume yields 

9’(r, 2) = (9/P,) (Po@) - P P ,  2)) 

2 ( lom v exp ( - g) 2nr d r )  = 2nbu,, 

and using the entrainment assumption u, = av (where u, is the entrainment velocity 
and a is called the entrainment constant), we obtain 

d(b2V)/dz = 2abv. ( 2 )  

Momentum conservation for the same horizontal element of the plume yields 

and using the Boussinesq approximation, we obtain 

d(ib2v2)/dz = h2b2g’. (3) 

Now the conservation of buoyancy is concerned with two separate effects: first, the 
effect of the stratification dpo/dz in the environment, and second, the increase in the 
volume flow rate of gas with height. It is helpful to isolate these two effects by con- 
sidering first an ordinary plume rising in a stratified environment. Conservation of 
buoyancy then yields 

or 
(4) 

where N ( z )  = (-gp;ldp,/dz)# is the local buoyancy frequency. Equation (4) can be 
interpreted as a relation concerning the quantity p;ld(flux of weight deficiency)/dz, 
and expresses the way this quantity changes owing to the effect of stratification. 

Second, let us consider a bubble plume rising in unstratified surroundings. The 
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FIQURE 1. Diagram showing a 'point' source of bubbles a t  depth h 

driving a plume to the surface. 

density p ( r ,  z )  a t  any point is the average effective density of a small region of the gas- 
liquid mixture, where this average is taken over a volume containing many bubbles. 
po(z) is now constant and the local ratio of the volume of gas to the volume of the 
mixture is given by g'(r, z)/g. The total average rise velocity of the individual bubbles 
is v(r, z )  + u, (where us is the slip velocity of the bubbles with respect to the rising plume), 
and from this it is possible to find a relation between Qo, v and g' by noting that at  any 
height the actual volume flow rate of bubbles is Q(z). Therefore 

or h2g'b2 = Qop,(A2+ ~ ) / ( H - z ) T ~ , ( v + u ~ ) ,  ( 5 )  

where uB = u,(h2+ 1).  The contribution to the quantity p;ld(flux of weight 
deficiency)/dz due to the effect of gas expansion is then 

Equations (4) and (6) can now be summed to obtain 
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FIGURE 2. Graphs of velocity T', radius B and buoyancy G for the single-plumo point-source 
model for R source strength Ll-1 of 10 arid for values of tlic stratification parameter C from 0 
to 240. 

The rise velocity of individual bubbles through a liquid is a function of their size, 
and as the bubbles rise and expand, i t  may be expected that their slip velocity will 
vary. However, it has been shown experimentally that, in a bubble plume such as ours, 
individual bubbles break up when they grow beyond a certain size and small bubbles 
coalesce until a stable bubble size is reached (Jones 1972). The size ofthe bubbles in the 
plume thus tends to  be nearly constant and their velocity us relative to the moving 
plume may be assumed constant. This slip velocity reduces the effective buoyancy flux 
because the bubbles spend less time communicating their buoyancy to the plume. 

Equations (2),  (3) and (7 ) ,  together with appropriate boundary conditions, com- 
pletely describe this plume model. Non-dimensional variables are chosen as follows: 

z = Hx, b = 2aHB, v = u,Jf*V, g r  = (u%M8/h2H)G, 

where J.f = Qopn(h2+ 1)/4na2p,H2u&. Ifu, is t'aken t,o be constant, M is proport,iona? 
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to  Qo/H2,  which by (1) is proportional to Q(O)/H.  Thus M simply represents the 
relative importance of (i) the volume flux of gas at the source and (ii) the total water 
depth in the non-dimensional solutions. 

Upon substituting these non-dimensional variables, (a), (3) and (7) become 

d d BG -(B2V) = BV, dx dx V - (BV)  = -, 

d 
ax - (BVG) = - CB'V + 

where C ( X )  = Nz(h2+ 1 )  H 2 / ~ 2 , M % .  

The solutions will thus depend on the two parameters M and C, and we shall need to  
find an appropriate way of initializing the integration of (8)-(10). Morton et al. (1956) 
found that a t  small heights an ordinary plume is not influenced very much by the 
stratification and so in the current situation it is considered appropriate to put C = 0 
for the purpose of finding the initial values of B2V and BV a t  small x. The initial value 
of BVG can be obtained from (S), and is V / (  1 - x) ( V + H-*).  This value of B2VG also 
satisfies (lo). At x = 0, B2V2 = B2V = 0 and (8) and (9) now have the power-series 
solution 

B = ~ [ 0 * 6 +  0.01719M-*~b- 0.002527M-$~0+~( -0~04609+0~000031M-1)+ ...I, 
( 1 1 )  

V = ~ ~ * [ 1 ~ 6 0 9 - 0 ~ 3 1 9 5 M ~ * ~ * + 0 ~ 0 6 6 9 3 M ~ ~ ~ ~ + ~ ( 0 ~ 4 5 3 6 - 0 ~ 0 1 0 5 M ~ ~ ) +  ...]. (12) 

Equations (8)-( 10) were solved numerically by a Runge-Kutta method with initial 
conditions obtained from the above power-series solutions for a starting value of 
x = 0.025. I n  each case the stratification was assumed to  be linear, implying that the 
value of C is independent of depth, but this of course is not necessary and solutions can 
readily be obtained if C is specified as a function of x. 

Figure 2 shows the effect of varying the stratification parameter C while keeping the 
source strength parameter constant and equal to 10. As may be expected, the model 
predicts that  the final height of the plume is less for greater stratification. For plumes 
which do not spread out before reaching high values of x, the effects of bubble expan- 
sion can be seen (e.g. the curves for C = 0 and C = 20 in figure 2). The buoyancy G 
and velocity V now increase dramatically owing to the large decrease in static pressure 
and the consequent increase in gas volume. 

A similar model to  the above has been developed for a two-dimensional bubble 
plume which is driven by a line source of gas; the results show the same qualitative 
features as the point-source solutions. 

3. Double-plume model 
3.1. Experimentwl observations 

Experiments were carried out in a Perspex tank of square horizontal cross-section 
I0.6 x 0.6 m) which was normally filled to  a height of approximately 1.3 m with linearly 
st,ratified salt solution. Air was introduced into the tank through a nozzle in the tank 
floor. I n  order to  simulate a large-scale plume as well as possible it is desirable to  make 
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FIGURE 3. Diagram of the shadowgraph during an experiment with h = 1.3 m, Qo = 27 c.c./s 
and N-2 = 0.41 s--2 (if we take u = 0.1, h = 0.3 and u, = 0.28 m/s, this leads to &I = 0.007 and 
C = 11000). The positions of six buoyancy bottles (which mark layers of constant density) are 
shown before and after the experiment. Lines are drawn between the two positions of each bottle. 
The model gave the first spreading-out level a t  z = 0.039, i.e. z = 45 cm, whereas it can be seen 
in fact to occur at  :: o 80 cm. 

the bubble size small. This makes the ‘average plume density’ a meaningful quantity, 
thereby ensuring plume-like behaviour and not simply that of a rapid succession of 
individual bubbles. Also,small bubbles have alow slip velocity and hence M (K uc3) is 
increased to  a value closer to what we envisage for the oil-well blow-out problem in the 
ocean. I n  an effort to reduce the bubble size, several additives were tried, including 
methylated spirits and detergent, but the most effective was octanoic acid, which was 
used at a concentration of 30p.p.m. Various types of nozzle were also tried and in the 
most successful arrangement the air was blown through a small piece of foam. The 
bubbles which were obtained were estimated to have a diameter of approximately 
1.25 mm. 

I n  order to find out where the plume was entraining and where it was losing fluid, 
observations were made of the movement of dye which marked layers of constant 
density. These dye layers were put in by means of a syringe which fitted into a non- 
return valve mechanism, so that dye could be mixed with the fluid which was going 
into the tank, just before it actually entered the tank. The layers of dye were about 
1 cm thick and were put in a t  a vertical spacing of approximately 10 cm. Another way 
of marking layers of constant density was developed by constructing small coloured 
bottles of specified density, which were allowed to float freely in the tank. The time 
history of the separation between two adjacent density levels gives an indication of 
whether the plume has had a net entraining effect or a net ‘detraining’ effect between 
these levels. 

With the air flow turned on a t  the desired rate, the positions of the layers were noted 
a t  various times. These results show that, during the course of an experiment for which 
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FIGURE 5 .  Diagram of the spreading-out stage of the double-plume model. Level A is where the 
outer plume has slowed to a very small velocity, level B is where the upward and downward mass 
fluxes sum to zero and level C is where the double-plume model starts again. 

the first plume model predicted that the plume would spread out at some inter- 
mediate level, the layers near the bottom moved closer together, while at  some higher 
levels the layers moved further apart, This indicated that the net effect of the plume 
a t  the lower level had been to entrain fluid, while at  the higher levels the plume had 
been losing fluid to the environment. Experiments using a shadowgraph to observe the 
motion showed that fluid was indeed leaving the plume at  these upper levels, and 
spreading out horizontally. Direct observations of the experiments showed that the 
bubbles rose to the surface in a narrow region, which we shall call the inner plume, and 
that the velocity of this inner plume did not vary very much, even at levels where the 
shadowgraph showed the outer plume to be spreading out. The radius of the inner plume 
was typically one-third of the radius of the outer plume. 

At a small distance above the spreading-out region, a layer was sometimes observed 
which did not move either up or down during the course of an experiment. This implies 
that there must have been an annular region around the inner plume which was 
descending in such a way that the two mass flow rates past this level were exactly 
balanced. This behaviour could also be seen on a shadowgraph. 

An example of the movements of these constant-density levels can be seen in 
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figure 3. When experiments are performed with a strongly stratified environment, the 
plume is seen to lose fluid to the environment at many different levels (see the shadow- 
graphs in figure 4, plate 1). 

3.2. The model 

3.2.1. The model equations. The observations described above led to the proposal of 
a ‘double-plume’ structure in which all the bubbles are confined to an inner plume 
which continues to rise all the way to the surface, while the outer plume contains only 
liquid. Initially the outer plume rises at some fraction of the velocity of the inside 
plume, but since it is denser than its surroundings, i t  will slow down and eventually 
stop rising and start to spread out horizontally, as shown in figure 5. The downflow at 
B in this figure may be thought of as analogous to the motion of an ordinary plume 
after it has reached its maximum height. Level A is a height at which the outside plume 
has slowed down to a very small upward velocity and its outside radius has begun to 
increase very rapidly. Level B is the level described above, where the mass fluxes of 
the inner and outer plumes sum to zero. Level C is where the double-plume structure 
starts again; the inner plume now has large mass and momentum fluxes and the outer 
plume is assumed to start with zero mass and momentum fluxes. Although the outer 
plume was never observed to neck down as much as is shown at this level, this proved to 
be a necessary expedient in order to restart the solution. 

In  order to obtain some equations which will describe the motion of this double- 
plume structure, it  is necessary to make some realistic assumptions about the rate of 
entrainment of fluid into and out of each plume. The usual entrainment assumption for 
an ordinary plume (u, = av) implies that there is only one velocity scale in the problem 
at each height; this is consistent with the solutions for an unstratified environment and 
has been shown to give good agreement between theory and experiment for ordinary 
plumes rising through a stratified environment (Morton et al. 1956). 

The velocity of the outer plume will be representative of the velocity difference in the 
shear layer between the outer plume and the environment. It seems plausible to extend 
the widely used entrainment assumption to this situation and to assume that the 
velocity of entrainment of fluid from the environment into the outer plume is pro- 
portional to the velocity of this outer plume. Similarly, the entrainment of fluid into 
the inner plume from the outer plume will be proportional to the velocity difference 
between the plumes. Also, the outer plume, because of its own turbulence, will entrain 
fluid from the inner plume, and this entrainment velocity will scale with a typical 
turbulent velocity in the outer plume. Turner (1  963) has used this assumption to model 
the loss of fluid from a rising turbulent thermal, owing to environmental turbulence. 
Morton (1  962) has pointed out that the relevant velocity scale on which to base this 
entrainment is the velocity of the outer plume. 

In  the absence of any experimental observations, top-hat profiles of velocity and 
buoyancy will be assumed. This will simplify the derivation but does not restrict the 
generality of the model provided that the profiles remain similar at all heights. The 
entrainment constants for each of the three entrainment processes are not assumed to 
be equal, but are a for the entrainment of environment fluid into the outer plume, aB 
for the entrainment of fluid into the irzner plume and ay for the rate of transfer of 
liquid from the inner plume into the outer plume. 
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The conservation of mass for the inner (subscript 1) plume then gives 

d(r;vl)/dz = 2r,aa(v1 -v2) - 2r1a, 1v21 

d[(r% - r;)  v2]/dz = - 2r1ap(v1 - v2) + 2r1ay 1v2( + 2r,a 1v21. 

(13) 

(14) 

and similarly for the outer (subscript 2) plume 

The normal equations for a single plume assume that constant-pressure surfaces 
remain horizontal, and this implies that  the buoyant force on the plume is simply 
g(po-p) multiplied by its area. This will be a good approximation when the sides of 
the plume are close to the vertical. Making the same assumption for this model means 
that  the buoyant force on each plume can be found by referring the plume's density 
to the density of the environment. The conservation equations of vertical momentum 
then become 

d(r;v;)/dZ = r2,g; + 2r1agv2(v1 - v2) - 2r1a,v1(v21, 

d[(ri  - r;)  v;]/dz = - (ri - r;)  g;. - 2r1ag v2(w1 - w2) + 2r1 a, v1(v21, 

(15) 

(16) 

where 

This definition of gk has been chosen to keep it positive. Further discussion on the body 
forces in this model is given in appendix B. 

I n  the derivation of the equations for the conservation of buoyancy, it must be 
remembered that the fluid which is entrained by the outer plume from the inner plume 
has a density different to the average density of the inner plume because the bubbles 
are not entrained but remain in the inner plume. Let pll be the density of the liquid part 
of the inner plume and p1 be the overall density of the inner plume. At any height, 
conservation of bubble volume requires that 

&(z)  = Q o P a / ( H - z ) f p g  = nr;(u+u,)A(z), (17)  

where A ( z )  is the local volume fraction which is occupied by the air. Consider a small 
volume in the inner plume which contains many bubbles. The overall density of this 
volume will be given by 

P 1 =  (1-A)Pll+Af,i* 

and since palr/pr E this equation approximates to 

9; = 9;1+ 9A 7 

where gil  = g/p;l(po-pll). The equations of conservation of buoyancy can now be 
obtained by applying the same arguments as were used to derive (7)  : 

Equations (13)-(20) describe the model. They may be non-dimensionalized by 
putting rl = BaHR,, r2 = 2aHR2, v1 = us2c!TfK, v2 = uSM*K, 
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where 

The equations then become 

and 

With suitable starting conditions the above equations can be solved by a Runge- 
Kutta procedure. 

- d(S2V, G,)/dx = - S'V, C + pR1 G2(& - V,) + yR1I V,l GIL. (26) 

3.2.2. Starting conditions. At the small starting value of x, the stratification of the 
environment will have had a negligible effect so the buoyancy of the inner plume will 
be entirely due to the bubbles, and therefore G,, = 0, i.e. 

G, = l / ( l -x)(K+M-i)R; .  (27) 

At this level G, is very small and so we assume that it is zero. V, is positive here and 
so the differential equations to be solved by power series reduce to 

d(R;V,)/dx = PR,v,-(Y+P)R,V,, (28) 

(29) 

( 30) 

(31) 

d( S2V,)/dx = - V, + (7 + p) R1 V, + R2 V,, 

d(R; V;)/dx = I/( 1 - 2) (V, + N-*) - (7 - P )  Rl K V, -/3R,VE, 

d ( S 2 V i ) / d ~  = PRlV; + (7 - P )  R, V, V,. 
By analogy with the form of the power-series solution of the single-plume model 

[ ( i l )  and (12)], we choose the following series: 

R, = z (T~+x*T~+. . . ) ,  

v, = x-*(w,+x*v2+ ...), 

V, = x-i(d, + S*d2 + . . .). 
S = z(b,+db,+ ...), 

The method of solution for these coefficients is given in appendix A. 

3.2.3. Numerical treatment of the spreading out. The numerical method will proceed 
as far as level A on figure 5 ,  where the velocity V, will be very small and the radius R, 
large. Some attempts were made to restart the model at level B, but without much 
success. The model became very sensitive to the values of various necessary parameters 
(such as the distance from level B to level A )  and as the distance from B to C is much 
smaller than the distance from the nozzle to B, we should not expect the plume 
equations to apply very well in this region. Consequently it was decided to start the 
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FIGURE 6. Graphs of velocities V ,  radii R and buoyancies G of the inner (subscript 1) and outer 
(subscript 2) plumes in the double-plume model for M = 1 with (a) G = 0 and (a) C = 20. 
Note that the spreading out of the outer plume occurs when its velocity goes to zero and its 
radius is large. Above this level, the outer plume starts again with R, = R,. Note also the 
effects on the velocities and radii of the large accelerations caused by gas expansion at  large x. 

solutions at  level C on figure 5, where the outer plume is assumed to have zero area 
(R, = Rl a t  level C). 

As levels A and C are close together, it seems reasonable to assume that the values of 
R,, V, and G, at level C are the same as those at level A .  Then we have the following 
equations to solve for V, and G, at level C: 

d(S2V,)/dx = -pR,K++l'V,(I +p+y) ,  (32) 

d(S2Vi) /dx = pR1 Vi-R,V,V,(p-y), (33) 

d(S2V,G,)/dx = -BR,G,(V,-V,) +yRlV,G,,. (34) 

The mass flux LPV, is zero at  this level, therefore d(S2V$)/dx is simply V, d(SZV,)/dx, 
and so (32) and (33) give 

v - Y V, (at level c). (35) - l + y  

Similarly, from (32) and (34) we obtain 

(36) G - _ -  G,, (at level c). 
1+Y 

These relations then enable the computer solutions to  start again a t  level C .  

2 -  
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FIGURE 7.  Graphs of velocities J’, radii R and buoyancies G of tho inner and outer plumes in the 
double-plume model for ( a )  211 = 1 ,  C‘ = 40 and ( b )  M = 0.01, C = 30000. 

3.2.4. Results of the double-plume model. Several experiments were performed in the 
laboratory with h = 1.3 m, the air flow rate Qo near 25c.c./s (giving M + 0.01) and 
with values of the stratification parameter C between 7000 and 33000 (values of N 2  
from 0.25 to ~ . O S - ~ ) .  These very high values of C had to be used because of the limita- 
tion on the depth of water in the experiments. (5 at  the surface is only 0.11.) At the 
lower end of this range of C only one spreading-out level was observed (see figure 3), 
while a t  the upper end of the range there were many spreading-out levels (see figure 4). 

The values of /3 and y were found by running the computer program for M = 0.01 
and C = 30000 with different values of p and y and selecting the values which best 
reproduced the salient features of the experiments, namely the almost constant inner 
radius rl and inner velocity vl. Values of ,8 = 0.5 5 0.1 and y = 1.0 & 0-1 achieved this, 
so p = 0.5 and y = 1.0 were used for all calculations with the double-plume model in 
this paper. Perhaps this lower value of /3 may be associated with the smaller length 
scale of turbulent eddies in the inner plume, as compared with those in the outer plume, 
but an explanation of these values of p and y lies beyond the scope of this paper. 

Figure 6 ( a )  shows graphs of the velocities, radii and buoyancies of both plumes for 
zero stratification and for M = 1. It is seen that the outer velocity is somewhat less 
than the inner velocity. The outer buoyancy G, is zero of course. 

It should be noted that in each numerical solution in this paper the graphs finish at  
2 = 0-985. The value of .2: at  any height z (m) for a nozzle depth h (m) is 

x = z / H  = z / ( h +  10.2)) 
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FIGURE 8. Graphs of velocities I/, radii R and buoyancies G of the inner and outer plumes in the 
double-plume model for ( a )  M = 0.01, C = 40 and ( b )  M = 0.01, C = 40 and the body-force 
formulation described in appendix B. 

so that if the water surface were to correspond to 2 = 0.985 then the depth of the 
water would be given by 0.985 = h/H = h / ( h +  10-2), i.e. h = 670m. For nozzle 
depths less than this, the position of the surface will correspond to smaller values of x. 
For example, for a nozzle depth h of 10*2m, the surface is a.t x = 0.5, and for this 
nozzle depth values of x > 0.5 have no physical meaning. 

Figures 6 ( 6 )  and 7 ( a )  show the effect of increasing the stratification. The value which 
was arbitrarily chosen in all cases for the height from level A to level C in figure 5 was 
0.4 x Rl (near A ) .  It can be seen from these figures that, as the stratification increases, 
the number of times that the fluid spreads out is increased and the distance between 
the levels a t  which it does this is decreased. 

The influence of the source strength parameter M on the non-dimensional solutions 
can be seen by comparing figures 7 (a) and 8 (a). The lower value of M means that in 
the non-dimensional solutions the plume effectively has less buoyancy (because the 
slip velocity of the bubbles is now a larger proportion of the plume velocity) and so it 
spreads out more rapidly. 

The experiments were carried out in a tank of small horizontal extent and hence the 
stratification of the ‘environment ’ in the tank changed appreciably during the course 
of an experiment. Consequently, it was possible to get meaningful results for only 
about the first minute of operation. This also means that the unsteady effects pro- 
duced by starting the plume are more pronounced than one would like in an experiment 
which is trying to model a steady-state situation. The experimental restriction on the 
depth of the water, which necessitates high values of C, implies that the distance 
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between successive settling-out heights is not much larger than the inner radius rl. 
(This similarity of scales can be seen in figure 4, although since the bubbles are not 
visible in these shadowgraphs only the edge of the outer plume can be seen.) For this 
reason we should not expect the assumptions involved in deriving the model to be an 
accurate representation of the experiments. 

The limitations on both the depth and the horizontal area of the tank preclude any 
detailed quantitative test of the model, but the main features of the experiments, 
namely the narrow inner plume and the successive levels of spreading out, are repro- 
duced well. For example, in the case M = 0.01, C = 30000, figure 7(b)  shows that the 
average x spacing between thespreading-out levels is about 0.01 9, whichfor the experi- 
ment of figure 4 corresponds to a difference in height of 22 cm. From the groups of ten 
1 ern markings on the tank in figure 4, this can be seen to be in reasonable agreement 
with experiment. 

Returning to the oil-well blow-out problem, Topham ( 1  974) suggests values of 
Q0 ( - 0.5 m3/s) and It (20-200 m) which give M % 1. Taking an average value of N2 of 
10-4 from Hunkins (1  974) as being typical for the 200 m case, we obtain C x 50. These 
values of M and C are certainly in the range where we expect spreading out to occur 
(cf. figure 7a). If the droplets of oil in the plume remain fairly large (i.e. if an emulsion 
does not occur) then we can imagine that evenwhen theoil has spread out horizontally 
it will st,ill eventually find its way to the surface within a few hours. However the 
formation of an emulsion seems likely (Chen 1974; Topham 1974), depending on the 
exact chemical composition of the oil and the nature of the turbulence close to the 
blow-out, and in this situation the oil could spend many days in the ocean and be 
carried far afield by slow currents. 

It is a pleasure to acknowledge the many stimulating dicussions I have had with 
Professor J. S. Turner, and to thank Dr P. F. Linden for his many helpful comments on 
an earlier draft of this paper. 

Appendix A. Power-series solution for the double-plume model 

following cubic for rl: 
On substituting the truncated power series of 3 3.2.2 into (28)-(31), we obtain the 

(A 1 )  r ~ + a 2 r ~ + a l r l + a ,  = 0, 

where 

and 

It can be shown that for E > 0 (and of course y > 0 and /3 > 0 )  the only physically 
allowable solution of (A 1 )  will have p3 +p2 < 0, where 

p = i a l - L  9a2 2 and p = &(a,a2-3ao)-&u~. 

This solution is 

where 0 = tan-l{(-q3-p2)*/p}, -&r < e 6 4.. 
rl = - ( - p)) cos 48 - $a2 + ( - 39)) sin 48, 
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For E c 0, q3 +p2 can be of either sign. When q3 +p2 c 0, the required solution is 

and when q3+p2 > 0 
rl = 2( - q)+ cos $0 - +a, 

rl = [ p  + (q3 +p2)+]* + [ p  - (q3+p2)4]+ - +a2. 

v,, d,  and b, can be found in terms ofr, from the following expressions: 

dl = vl(P-Erl)/(Y+P)t 

b l  = [w.,+ w - ~ ) ~ l V l / ~ l I * .  

Proceeding to the next terms in the series, we obtain four simultaneous linear 
equations in the four unknowns. These are expressed in the matrix form given below 
and the solutions for r2,  v2, b, and d,  can be readily obtained by standard matrix 
methods. We set 

where cll = %vl, 7 c12 = 2rl-p, ~ 1 3  = 0, c14 = y+P, 

c21 = - p d ,  - ( y  - P )  vl, c22 = - ( y  - p)  rl, ~ 2 3  = J$bld1, 

cg4 = 2d1(b,2 + r : )  - 2bfS + ( y  +P)  rlS, 

~ 2 4  = _1,4_b; - 3Pr,, 

c3, = 2 r l d ~ - ~ v l S + ( y - t - ~ ) d l S ,  ~ 3 2  = -PrlS, c33 = 2b,d~-4bld,S,  

cP2 = -+%:v; + (7 - P )  r,dlvl + v i l ,  c4, = J+r,v: + ( y  - p)  dlvy + /3d2,vl, 

c43 = 0, c44 = ( y  - P )  rl v: + 2Pr101 d,, 
S = -$Q(b2,dl+r!v,). 

Appendix B. Some thoughts on the body forces in a double-plume model 
It is not obvious how to account for the body forces acting on the inner and outer 

plumes. The assumption that pressure surfaces remain horizontal across the environ- 
ment and both plumes leads to equations (15) and (16) for the conservation of momen- 
tum flux, Berson & Baird (1975) postulated a model for cumulonimbus convection 
which involves a plume element surrounded by other elements, two of which have 
different densities to the plume element in question. They took the body force to be 
given by a weighted sum of locally defined buoyancy forces, namely 

where the weighting factors Ai*, are the ratio of the length of contact between fluid i 
and fluid i & 1 to  the total perimeter of the plume element i. This method of weighting 
of the relative buoyancy terms with the relevant proportion of the periphery of the 
plume element seems to have no clear physical justification. 

If we are to pursue the argument of referring buoyancy to the local elements, then 



Bubble plumes in strati$ed environments 67 1 

this must be done in a frame of reference which is fixed to these surrounding elements 
(i.e. an accelerating frame of reference). This implies that  the non-dimensional 
momentum equation for the inner plume becomes 

d(R: Vq)/dx = Rf(G,+G,+V,dV,/dx)  +pRIV,',(K-V,)-yRlV, lV,J (B 1)  

instead of ( 2 3 ) .  (V,dV,/dx is the non-dimensional acceleration of the outer plume.) 
Now in order to obtain the momentum equation for the outer plume, it seems 

reasonable to assume that the overall momentum equation, taken across both plumes, 
should still apply, i.e. 

This averaging across both plumes is analogous to what is done for a single plume when 
Gaussian profiles are assumed, except perhaps that now we expect a rather sharp 
change in velocity and buoyancy between the two plumes. Subtracting (B 1 )  from 
(B 2), we obtain 

(B 2) d ( R 4 V ~ + S ' . V ~ ) / d x  = R4Gl -S2G,. 

d(S2Vg)/dx = - S2G, - Rl(G2 + V,dV,/dx) -pRlV,(< - V,) +yRlV, 151. (B 3) 

I n  our application to bubble plumes, G, will normally be significantly larger than 
both G, and V, dV,/dx, and also since G, will always be positive and V, dV,/dx negative 
(except for large x), we conclude [by inspection of (B l)] that this different formulation 
of the momentum equations is likely to have little effect on the motion of the inner 
plume. What will its effect be on the outer plume? When S2% R: the first term on the 
right-hand side of (B 3) will dominate the second term, but when S2 + R: the second 
term can be more important than the first. However, for these small values of 82, the 
velocity V, is not small and the mixing term R,Bi is larger than both of the first two 
terms. 

For these reasons we should not expect the solutions to be changed very much 
owing to this reformulation of the body forces and indeed all the numerical examples 
which were done confirmed this expectation. All the computer graphs were virtually 
identical to their counterparts described in Q 3.2.4. Figure 8 ( b )  shows the solutions 
obtained using these new equations for M = 0.01 and C = 40, and is to be compared 
with figure 8 (a).  

Although it has been shown that this reformulation of the body forces does not 
significantly affect the results of a bubble plume model, it is expected to be important 
for other double-plume structures (e.g. atmospheric convection) where G, is not much 
larger than G,. 
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FIGURE 4. Three shadowgraphs taken at successive times (from left to right) during the course 
of an experiment with M = 0.01, C = 30000. The spreading-out stages are numbered from the 
nozzle upwards. The small cylinders are the coloured density-marker bottles. 
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